
1. daisy:251 (Michael, C. C.)

2. daisy:252 (Radosevich, Will)

6. #Evaluation-Criteria

Black Box Security Testing Tools
C. C. Michael, Cigital, Inc. [vita1]
Will Radosevich, Cigital, Inc. [vita2]

Copyright © 2005 Cigital, Inc.

2005-12-28

This document is about black box testing tools. We use this term to refer to tools that take a black box
view of the system under test; they do not rely on the availability of software source code or
architecture, and in general try to explore the software’s behavior from the outside.

Introduction

This document focuses on black box testing technologies that are unique to software security testing. To
go beyond that boundary would entail a full discussion of test automation and automated test
management support, which is far beyond the intended scope of the document. These other technologies
are touched upon, however, in the Evaluation Criteria6 section.

This document discusses one particular aspect of black box security testing, namely, the use of
automated tools during the test process. But any such discussion should begin with a caveat: security
testing relies on human expertise to an even greater extent than ordinary testing, so full automation of
the test process is even less achievable than in a traditional testing environment. Although there are tools
that automate certain types of tests, organizations using such tools should not be lulled into a false sense
of security, since such tools cover only a small part of the spectrum of potential vulnerabilities. Instead,
test tools should be viewed as aides for human testers, automating many tasks that are time consuming
or repetitive.

Scope and Intended Audience
This document is meant for security analysts and aims to provide an overview of the capabilities of
black box testing tools. The focus is on categorizing important capabilities of these tools and providing
some guidance for evaluating them.

Business Case

Black box testing is generally used when the tester has limited knowledge of the system under test or
when access to source code is not available. Within the security test arena, black box testing is normally
associated with activities that occur during the pre-deployment test phase (system test) or on a periodic
basis after the system has been deployed.

Black box security tests are conducted to identify and resolve potential security vulnerabilities before
deployment or to periodically identify and resolve security issues within deployed systems. They can
also be used as a “badness-ometer” [McGraw 04] to give an organization some idea of how bad the
security of their system is. From a business perspective, organizations conduct black box security tests to
conform to regulatory requirements, protect confidential and proprietary information, and protect the

Black Box Security Testing Tools 1
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

daisy:251
daisy:252
#Evaluation-Criteria

13. http://www.cert.org/stats/cert_stats.html

12. CERT/CC Statistics 1988-200613

organization’s brand and reputation.

Businesses have a legitimate reason to be concerned about potential security vulnerabilities within their
systems. In 2003, the CERT Coordination Center received 137,529 reports of security incidents12. This
was a staggering 67.5% increase in the number of reported incidents from the previous year. A great
number of these incidents were due to the widespread use of automated attack tools that have simplified
security scans and attacks and allowed them to rapidly be employed against Internet-connected
computers and applications.

While the number of reported security incidents continues to rise, the CSI/FBI noted that the total
monetary loss reported by 639 companies in 2005 was significant at $130,104,542 [Gordon 05]. In
addition, CSI/FBI noted that the average financial loss of reporting organizations subjected to theft of
proprietary information was $355,552, and those reporting losses due to unauthorized access to
information averaged $303,234.

These figures describe significant financial losses that are the direct result of security incidents.
Although security testing on its own is not a suitable substitute for using security best practices
throughout the SDLC, black box test tools can help an organization begin to understand and address
potential security issues within their systems. These tools allow testers to efficiently and in an automated
manner conduct security scans for both known and unknown security vulnerabilities that may adversely
impact an organization’s business. Armed with the results of the black box test effort, organizations can
better understand and address the risks posed to their business.

Application Security Test Tools. The CSI/FBI 2005 Computer Crime and Security Survey showed a
significant increase in web-based attacks, with a full 95% of survey respondents advising that they had
experienced more than ten web site incidents during the last year. This was an exponential increase in
web site incidents over the previous year, when only 5% of respondents experienced more than ten
incidents.

Fortunately, a significant number of black box test tools focus on application security related issues.
These tools concentrate on security related issues including but not limited to

• input checking and validation

• SQL insertion attacks

• injection flaws

• session management issues

• cross-site scripting attacks

• buffer overflow vulnerabilities

• directory traversal attacks

The tools are developed and distributed by a collection of open source communities and for-profit
businesses such as the Open Web Application Security Project (OWASP), Cenzic, SPI Dynamics, NT
Objectives, Sanctum, and others. As the trend for web application security incidents increases, the need
for these tools to test Internet-enabled applications increases as well.

Pre-Deployment: During the Development Life Cycle. According to NIST, the relative cost of
repairing software defects increases the longer it takes to identify the software bug [NIST 02]. For
example, NIST estimates that it can cost twenty times more to fix a coding problem that is discovered

Black Box Security Testing Tools 2
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://www.cert.org/stats/cert_stats.html

15. http://nvd.nist.gov/

14. NIST National Vulnerability Database15

after the product has been released than it would have cost if discovered during the system test phase,
when black box test tools are normally used.

This figure should not be surprising considering the personnel and processes required to address a
security issue after deployment. Help desk personnel are required to take trouble calls from the
customer; support engineers are required to confirm and diagnose the problem; developers are needed to
implement code fixes; QA personnel are called to perform system regression tests; and managers
oversee the entire process. There are additional expenses to consider, such as those associated with patch
distribution and the maintenance of multiple concurrently deployed versions. Additionally, a serious
post-deployment software vulnerability may result in potential business issues, such as damage to brand
or company reputation, and potential legal liability issues.

Accordingly, black box security test tools can be used during the system test phase to identify and
address these issues, reduce system development costs, and reduce business risks associated with
company reputation and liability.

Post-Deployment: An Evolving Challenge. Unfortunately, the specific instance of security
vulnerabilities is constantly changing. For example, each month NIST catalogues approximately 300
new security vulnerabilities14. CERT cataloged 3,780 vulnerabilities in 2004. These figures highlight the
challenges all organizations face when using software in the conduct of their business.

Many of these failures are a direct result of improper security designs or implementation errors that are
introduced during development. Organizations that purchase software do not have control over these
issues. Fortunately, many black box security test tools are periodically updated to test for these newly
discovered vulnerabilities, allowing businesses to conduct periodic security tests of their systems.

Benefits and Limitations of Black Box Testing. As previously discussed, black box tests are generally
conducted when the tester has limited knowledge of the system under test or when access to source code
is not available. On its own, black box testing is not a suitable alternative for security activities
throughout the software development life cycle. These activities include the development of
security-based requirements, risk assessments, security-based architectures, white box security tests, and
code reviews. However, when used to complement these activities or to test third-party applications or
security-specific subsystems, black box test activities can provide a development staff crucial and
significant insight regarding the system’s design and implementation.

Black box tests can help development and security personnel

• identify implementation errors that were not discovered during code reviews, unit tests, or security
white box tests

• discover potential security issues resulting from boundary conditions that were difficult to identify
and understand during the design and implementation phases

• uncover security issues resulting from incorrect product builds (e.g., old or missing modules/files)

• detect security issues that arise as a result of interaction with underlying environment (e.g., improper
configuration files, unhardened OS and applications)

Accordingly, black box security test efforts complement the critical security activities throughout the
SDLC. The tools help developers and security personnel verify that the system security components are
operating properly and also identify potential security vulnerabilities resulting from implementation
errors. Additionally, black box security tests can help security practitioners test third-party components
that may be considered for integration into the overall system and for which source code is not available.
These tests may help the development staff uncover potential security vulnerabilities and make

Black Box Security Testing Tools 3
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://nvd.nist.gov/

intelligent decisions about the use of certain products within their overall system.

Although these tests should not be considered a substitute for techniques that help developers build
security into the product during the design and implementation stages, without these tests, developers
may overlook implementation issues not discovered in earlier phases. Despite the best efforts of the
development staff, mistakes do occur—coding errors, incorrect components in the latest software build,
unexpected interaction with the deployed environment, and boundary conditions, to name a few. Black
box security tests provide a method to validate the security of the system before it is deployed.

Black box testing tools provide various types of automated support for testers. They help testers work
more efficiently by automating whatever tasks can be automated, and they also help testers avoid
making mistakes in a number of tasks where careful bookkeeping is needed. Their main roles include

• test automation: providing automated support for the actual process of executing tests, especially
tests that have already been run in the past but are being repeated

• test scaffolding: providing the infrastructure needed in order to test efficiently

• test management: various measurements and scheduling and tracking activities that are needed for
efficient testing even though they are not directly involved in the execution of test cases

Black Box, White Box, and Gray Box Testing

In this document, we use the term “black box testing” to mean test methods that are not based directly on
a program’s architecture source code. The term connotes a situation in which either the tester does not
have access to the source code or the details of the source code are irrelevant to the properties being
tested. This means that black box testing focuses on the externally visible behavior of the software. For
example, it may be based on requirements, protocol specifications, APIs, or even attempted attacks.

In some formulations, a black box tester has access only to the application’s user interface, either for
entering data or observing program behavior. We will not adopt this viewpoint here, since one of the
main points of black box security testing is to get some idea of what an attacker could do to an
application. In many situations, attackers are not constrained to interact with a program through the UI
(though many do).

Black box testing is different from white box testing, which is testing based on knowledge of the source
code. In fact, white box tests are generally derived from source code artifacts in some way or another.
For example, the tests might target specific constructs found in the source code or try to achieve a
certain level of code coverage.

Between black box and white box testing lies gray box testing, which uses limited knowledge of the
program internals. In principle this could mean that the tester knows about some parts of the source code
and not others, but in practice it usually just means that the tester has access to design artifacts more
detailed than specifications or requirements. For example, the tests may be based on an architecture
diagram or a state-based model of the program’s behavior.

Types of Test Tools

Black box test activities almost universally involve the use of tools to help testers identify potential
security vulnerabilities within a system. Among the existing available toolsets, there are subsets of tools
that focus on specific areas, including network security, database security, security subsystems, and web
application security.

Network security based test tools focus on identifying security vulnerabilities on externally accessible
network-connected devices such as firewalls, servers, and routers. Network security tools generally

Black Box Security Testing Tools 4
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

29. http://csrc.nist.gov/rng/rng2.html

begin by using a port scanner to identify all active devices connected to the network, services operating
on the hosts, and applications running on each identified service.

Some network scanning tools also perform vulnerability scanning functions. That is, they identify
specific security vulnerabilities associated with the scanned host based on information contained within
a vulnerability database. Potential vulnerabilities include those related to open ports that allow access to
insecure services, protocol-based vulnerabilities, and OS and application related vulnerabilities resulting
from poor implementation or configuration. Each vulnerability provides a potential opportunity for an
attacker to gain unauthorized access to the system or its resources. These tools have historically been
associated with penetration testing, which is not covered in this document.

Database security test tools center on identifying vulnerabilities in a systems database. These can be the
result of incorrect configuration of the database security parameters or improper implementation of the
business logic used to access the database (e.g., SQL insertion attacks). These vulnerabilities may result
in the disclosure or modification of sensitive data in the database. Database scanning tools are generally
wrapped in network security or web application security scanning tools and will not be specifically
discussed in this document.

Security subsystem tools identify security vulnerabilities in specific subsystems. Whereas the previously
discussed tools are used after the system has been developed, these tools are used during the
implementation cycle to test whether security-critical subsystems have been designed and implemented
properly. As an example, these tools test for correct operation of random number generators (e.g., NIST
Statistical Test Suite29 for random number generation), cryptographic processors, and other
security-critical components.

Web application security tools highlight security issues within applications accessed via the Internet.
Unlike network security tools, application security tools generally focus on identifying vulnerabilities
and abnormal behavior within applications available over ports 80 (HTTP) and 443 (HTTPS). These
ports are traditionally allowed through a firewall to support web servers.

Through the years, IT managers and security professionals have learned to secure the network perimeter
by installing and maintaining firewalls and other security appliances, securely configuring host machines
and their applications, and enforcing a software patch management solution to address software
vulnerabilities. At the same time, attackers and security professionals alike have identified a new class of
security vulnerabilities within web based applications. This new class of security vulnerabilities cannot
be controlled by the firewall and must be addressed with proper application design and implementation.
The Gartner Group reports that up to 75% of all web-based attacks are now conducted through the open
web application ports 80 and 443. As a result, web-based applications must be designed in a manner that
does not permit an attacker to take advantage of an application’s vulnerability. These vulnerabilities can
result from a number of issues, including

• improper input validation

• parameter injection and overflow

• SQL injection attacks

• cross-site scripting vulnerabilities

• directory traversal attacks

• buffer overflows

• inappropriate trust (i.e. client side)

• poor session management

Black Box Security Testing Tools 5
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://csrc.nist.gov/rng/rng2.html
http://csrc.nist.gov/rng/rng2.html

33. http://www.cenzic.com/products_services/cenzic_hailstorm.php

34. http://www.iss.net/products_services/enterprise_protection/vulnerability_assessment/scanner_internet.php

35. http://www.ntobjectives.com/freeware/index.php

36. http://www.ntobjectives.com/products/ntospider.php

37. http://www.watchfire.com/products/security/default.aspx

38. http://www.sisecure.com/company/ourtechnology/index.shtml

39. http://www.spidynamics.com/products/index.html

• improper authorization and access control mechanisms

Application security test tools can be used to help identify potential security vulnerabilities within
commercial and proprietary based web applications. The tools are frequently used in both the
pre-deployment and post-deployment test cycles. A development staff can use application security tools
to test their web-based applications prior to deployment. Pre-deployment testing allows the development
staff to investigate and resolve noted vulnerabilities and abnormal or interesting test results. The test
tools can also be used post-deployment by the developer or the developer’s customer to periodically test
and monitor the deployed system.

Some of these tools provide rather sophisticated functionality, including capabilities to develop and
enforce organization security policies, the ability to create custom rules, the automated scheduling of
application security tests, and comprehensive vulnerability databases that attempt to address zero-day
attacks.

These tools are created and offered by both open source communities and commercial companies. As
previously stated, a number of black box testing tools provide tests that focus on several of these test
areas. It is important to note that these tools are different than the plethora of source code scanning and
binary/bytecode scanning tools. Although the use of source code and binary/bytecode scanning tools is
considered an important element of a robust security engineering process, these tools are not considered
black box testing tools and will not be discussed in this section.

Commercial Tools
The following is a sample of commercially available application security black box test tools. The list is
intended to familiarize the reader with various tools on the market and to encourage the reader to
conduct independent review of application security tool capabilities.

Cenzic Hailstorm33

Internet Security Systems Internet Security Scanner34

NT Objectives ntoinsight 2.0/ntoweb35, NTOSpider36

Santum Appscan37

Security Innovation38 (I^2, Black Widow, Hydra, BOTOOL, CodeSensor)

SPI Dynamics39 (WebInspect,Appinspect)

Open Source/Freeware
The following is a summary list of open source and freeware application security scanning tools.

Achilles42

Black Box Security Testing Tools 6
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://www.cenzic.com/products_services/cenzic_hailstorm.php
http://www.iss.net/products_services/enterprise_protection/vulnerability_assessment/scanner_internet.php
http://www.ntobjectives.com/freeware/index.php
http://www.ntobjectives.com/products/ntospider.php
http://www.watchfire.com/products/security/default.aspx
http://www.sisecure.com/company/ourtechnology/index.shtml
http://www.spidynamics.com/products/index.html
http://achilles.mavensecurity.com/

42. http://achilles.mavensecurity.com/

43. http://www.sisecure.com/holodeck/index.shtml

44. http://www.cirt.net/code/nikto.shtml

45. http://www.wastelands.gen.nz/odysseus/index.php

46. http://www.owasp.org/software/webscarab.html

47. http://www.immunitysec.com/resources-freesoftware.shtml

58. #Evaluation-Criteria

Holodeck43

Nikto44

Odysseus45

OWASP WebScarab46

SPIKE47

Tool Selection
Selecting a black box test tool can be a challenging task due to the wide array of available commercial
vendors and open source projects in this area. There are a number of high-level considerations that you
should contemplate before selecting a tool that is useful for your specific application and organization:

• test coverage and completeness

• accuracy or “false-positive” rate

• capacity and “freshness” of vulnerability database

• ability to create custom tests

• ease of use

• reporting Capabilities

• cost

A list of criteria that one may consider before selecting a black box test tool is included in Section
Evaluation Criteria58.

Technologies for Black Box Security Testing

Not surprisingly, black box testing for security has a different technological focus than traditional black
box testing. [Fink 04] defines positive requirements as those requirements that state what a software
system should do, while negative requirements state what it should not do. Although security testing
deals with positive requirements as well as negative ones, the emphasis is on negative requirements. In
contrast, traditional software testing focuses on positive requirements. This difference in emphasis is
reflected in the test tools that support black box test activities.

The technology incorporated in such tools can be classified as follows, according to its functionality:

• fuzzing: the injection of random or systematically-generated data at various interfaces, with various
levels of human intervention to specify the format of the data

Black Box Security Testing Tools 7
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://www.sisecure.com/holodeck/index.shtml
http://www.cirt.net/code/nikto.shtml
http://www.wastelands.gen.nz/odysseus/index.php
http://www.owasp.org/software/webscarab.html
http://www.immunitysec.com/resources-freesoftware.shtml
#Evaluation-Criteria

78. This issue is not unique to fuzzing. When acquiring a testing tool (or any other technology), it is therefore wise to evaluate
it according what it actually does, and not according to the names it gives to its capabilities.

• syntax testing: generating a wide range of legal and illegal input values, usually with some
knowledge of the protocols and data formats used by the software

• exploratory testing: testing without specific expectation about test outcomes, and generally without
a precise test plan

• data analysis: testing the data created by an application, especially in the context of cryptography

• test scaffolding: providing testers with support tools they need in order to carry out their own black
box tests. For example, if the tester wants to inject a certain error code when an application tries to
open a pipe, support technology is needed to actually carry out this test.

• monitoring program behavior: When a large number of tests are automatically applied, it is useful
to also have automatic techniques for monitoring how the program responds. This saves testers from
having to check for anomalous behavior manually. Of course, a human is better at seeing anomalous
behavior, but the anomalies that signal the presence of a security vulnerability are often quite
obvious.

In this section, we do not discuss test automation technology, which is a standard technology used to
automate the execution of tests once they have been defined. It is technology for traditional testing, and
this fact makes it too broad of a subject to cover within the intended scope of this document. However,
any extensive treatment of software testing also covers test automation, and the reader may consult
standard references on software testing such as [Beizer 95], [Black 02], and [Kaner 93].

Fuzzing
The term fuzzing is derived from the fuzz utility (ftp://grilled.cs.wisc.edu/fuzz), which is a random
character generator for testing applications by injecting random data at their interfaces [Miller 90]. In
this narrow sense, fuzzing means injecting noise at program interfaces. For example, one might intercept
system calls made by the application while reading a file and make it appear as though the file contained
random bytes. The idea is to look for interesting program behavior that results from noise injection and
may indicate the presence of a vulnerability or other software fault.

Since the idea was originally introduced, the informal definition of fuzzing has expanded considerably,
and it can also encompass domain testing, syntax testing, exploratory testing, and fault injection. This
has the unfortunate consequence that when one author denigrates fuzzing (as in [McGraw 04]) while
another extols it (as in [Faust 04]), the two authors might not be talking about the same technology78.
The current section is partly meant to emphasize that in this document, “fuzzing” is used in the narrow
sense implied by [Miller 90].

Fuzzing, according to the first, narrower definition, might be characterized as a blind fishing expedition
that hopes to uncover completely unsuspected problems in the software. For example, suppose the tester
intercepts the data that an application reads from a file and replaces that data with random bytes. If the
application crashes as a result, it may indicate that the application does not perform needed checks on
the data from that file but instead assumes that the file is in the right format. The missing checks may (or
may not) be exploitable by an attacker who exploits a race condition by substituting his or her own file
in place of the one being read, or an attacker who has already subverted the application that creates this
file.

For many interfaces, the idea of simply injecting random bits works poorly. For example, imagine
presenting a web interface with the randomly generated URL “Ax@#1ZWtB.” Since this URL is
invalid, it will be rejected more or less immediately, perhaps by a parsing algorithm relatively near to the

Black Box Security Testing Tools 8
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

interface. Fuzzing with random URLs would test that parser extensively, but since random strings are
rarely valid URLs, this approach would rarely test anything else about the application. The parser acts as
a sort of artificial layer of protection that prevents random strings from reaching other interesting parts
of the software.

For this and other reasons, completely random fuzzing is a comparatively ineffective way to uncover
problems in an application. Fuzzing technology (along with the definition of fuzzing) has evolved to
include more intelligent techniques. For example, fuzzing tools are aware of commonly used Internet
protocols, so that testers can selectively choose which parts of the data will be fuzzed. These tools also
generally let testers specify the format of test data, which is useful for applications that do not use one of
the standard protocols. These features overcome the limitation discussed in the previous paragraph. In
addition, fuzzing tools often let the tester systematically explore the input space; for example, the tester
might be able to specify a range of input values instead of having to rely on randomly generated noise.
As a result, there is a considerable overlap between fuzzing and syntax testing, which is the topic of the
next section.

Syntax Testing
Syntax testing [Beizer 90] refers to testing that is based on the syntactic specification of an application’s
input values. The idea is to determine what happens when inputs deviate from this syntax. For example,
the application might be tested with inputs that contain garbage, misplaced or missing elements, illegal
delimiters, and so on. In security testing, one might present a web-based application with an HTTP
query containing metacharacters or JavaScript, which in many cases should be filtered out and not
interpreted. Another obvious syntax test is to check for buffer overflows by using long input strings.

Syntax testing helps the tester confirm that input values are being checked correctly, which is important
when developing secure software. On the other hand, syntactically correct inputs are also necessary for
getting at the interesting parts of the application under test, as opposed to having the test inputs rejected
right away, like the random-character URL in the section on fuzzing.

Typically, it is possible to automate the task of getting inputs into the right form (or into almost the right
form, as the case may be). This lets the tester focus on the work of creating test cases instead of entering
them in the right format.

However, the degree of automation varies. It is common for testers to write customized drivers for
syntax testing, which is necessary when the inputs have to be in an application-specific format. Test
tools can provide support for this by letting the tester supply a syntax specification and automating the
creation of a test harness based on that syntax. On the other hand, the tool may also come with a
prepackaged awareness of some common input formats.

In security test tools, there is a certain emphasis on prepackaged formats because many applications
communicate across the network using standard protocols and data formats. It makes sense for a security
test tool to be aware of widely used protocols, including HTTP, FTP, SMTP, SQL, LDAP, and SOAP, in
addition to supporting XML and simplifying the creation of malicious JavaScript for testing purposes.
This allows the tool to generate test input that almost makes sense but contains random values in
selected sections. Creating useful syntax tests can be a complex task because the information presented
at the application interface might be mixed, perhaps containing SQL or JavaScript embedded in an
HTTP query.

Many attacks are injection attacks, where a datastream that is in one format according to the
specification actually contains data in another format. Specifically, most data formats allow for
user-supplied data in certain locations, such as SQL queries in a URI. The embedded data may be
interpreted by the application, leading to vulnerabilities when an attacker customizes that data. Such
vulnerabilities may or may not be visible in the design; a classic example of where they are not visible is
when a reused code module for interpreting HTML also executes JavaScript.

Black Box Security Testing Tools 9
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

One important variant of syntax testing is the detection of cross-site scripting vulnerabilities. Here, the
actual interpreter is in the client application and not the server, but the server is responsible for not
allowing itself to be used as a conduit for such attacks. Specifically, the server has to strip JavaScript
content from user-supplied data that will be echoed to clients, and the same goes for other data that
might lead to undesired behavior in a client application. Testing for cross-site scripting vulnerabilities
(see [Hoglund 02]) amounts to ensuring that dangerous content really is being stripped before data is
sent to a client application, and this, too, involves specially formatted data.

Automated support for syntax testing may or may not provide a good return on investment. Good
security testing requires a certain level of expertise, and a security tester will probably be able to write
the necessary support tools manually. Custom data formats make it necessary to write some customized
test harnesses in any event. It may also be cost effective to write in-house test harnesses for standard
protocols, since those harnesses can be reused later on, just as third-party test harnesses can. Although
in-house test drivers do not usually come into the world with the same capabilities as a third-party test
application, they tend to evolve over time. Therefore, the amount of effort that goes into the
development and maintenance of in-house test drivers diminishes over time for commonly used data
formats. In spite of these factors, third-party tools often can have usability advantages, especially
compared to in-house tools being used by someone who did not develop them originally.

Exploratory Testing and Fault Injection
In security testing, it may sometimes be useful to perform tests without having specific expectations
about the test outcome. The idea is that the tester will spot anomalies—perhaps subtle ones—that
eventually lead to the discovery of software problems or at least refocus some of the remaining test
effort. This contrasts with most other testing activities because usually the test plan contains information
about what kind of outcomes to look for. Exploratory testing is discussed in depth in [Whittaker 02] and
[Whittaker 03].

There is no technical reason why a test plan cannot map out these tests in advance, but in practice many
testers find it useful to let the outcome of one test guide the selection of the next test. In a sense, the
tester is exploring the software’s behavior patterns. This makes sense because a subtle anomaly may
create the need to collect further information about what caused it. In a black box test setting, getting
more information implies doing more tests. This leads to the concept of exploratory testing.

Most test technologies that support exploratory testing can also be used for other test activities, but some
techniques are associated more closely with exploratory testing than with other types of testing. For
example, fuzzing (in the narrow sense of the word described earlier) falls into this category, because
usually testers don’t have any exact idea of what to expect. More generally, certain test techniques make
it hard to say exactly what anomalous behavior might occur even though there is interest in seeing how
an application will respond. Some of the other techniques that fall into this category are:

Security stress testing, which creates extreme environmental conditions such as those associated with
resource exhaustion or hardware failures. During traditional stress testing, the idea is to make sure that
the application can continue to provide a certain quality of service under extreme conditions. In contrast,
during security testing it may be a foregone conclusion that the application will provide poor
service—perhaps good performance under stress is not a requirement—and the tester might be looking
for other anomalies. For example, extreme conditions might trigger an error-handling routine, but error
handlers are notorious for being under-tested and vulnerable. As a second example, slow program
execution due to resource exhaustion might make race conditions easier to exploit. Needless to say, an
attacker might be able to create whatever extreme conditions are needed for the attack to succeed.

Fault injection, which directly modifies the application’s internal state [Voas 97]. Fault injection is
often associated with white box testing, since it references the program’s internal state, but in practice
certain types of test modify external data so close to the program’s inner workings that they can also be
regarded as fault injection. For example, the tester might intercept calls to the operating system and

Black Box Security Testing Tools 10
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

interfere with the data being passed there. Interfering in communication between executable components
might also be regarded as a black box technique.

Fault injection can clearly be used for stress testing, but it can also be used to help a tester create
conditions with relative ease that an attacker might create with greater effort. For example, if the tester
interferes with interprocess communication, it might approximate a situation where one of the
communicating processes has been subverted by an attacker. Likewise, intercepting calls to the
operating system can be used to simulate the effects of an attacker getting control of external resources,
since system calls are used to access those resources. It is not always clear how an attacker might exploit
problems found using fault injection, but it can still be useful to know that those problems are there. Of
course, some of the resulting tests might also be unfair—for example, an attacker intercepting system
calls could manipulate all of the application’s memory—and in the end the tester has to ensure that the
test results are meaningful in an environment where the operating system protects the application from
such attacks.

Data Analysis Capabilities
By data analysis, we mean the process of trying to understand a program’s internals by examining the
data it generates. This might be followed by an attempt to go beyond mere observation and influence the
program’s behavior as well. One of the concerns of black box security testing is to try performing this
type of analysis in order to determine whether an attacker could do the same thing.

Two particularly salient issues are

• Stateless protocols use external mechanisms to keep track of the state of a transaction (HTTP uses
cookies, for example). It is not always desirable to expose this state information to a potential
attacker, but data analysis can be used to deduce state information at the black box level.

• It is sometimes necessary to use random numbers to generate cryptographically secure keys or
hashes on the fly. If an attacker can collect outputs from a weak random number source and analyze
those outputs sufficiently well to predict future random bits, even a strong cryptographic algorithm
can be compromised.

A related issue that will not be discussed at great length is that random numbers are used in
computerized casino gaming, and an attacker who can predict these numbers—even partially—may be
able to cheat.

In each of these cases, the security issue is the ability to generate random numbers that prevent the
attacker from seeing patterns or predict future values. As a rule, this issue should be addressed in the
design phase—using weak random number generation is a design flaw—but testing still plays its usual
roles. For example, it can be used to probe whether the design is implemented correctly or to examine
third-party components whose source code is unavailable. In one case, a municipality needed secure
random numbers to secure a specific aspect of law-enforcement-related communications, but problems
were encountered in obtaining the necessary source code from a third-party vendor. Black box testing
was used to achieve a minimal level of due diligence in the question of whether the random numbers
were unpredictable.

Cookie analysis deserves its own discussion. It consists of deducing how a web application uses cookies
in order to examine the application’s inner workings, or even to hijack sessions by predicting other
users’ cookie values. In a well-designed system this should not lead to an immediate compromise—after
all, truly sensitive information should be protected by SSL or a similar mechanism—but cookie analysis
can provide the toehold that an attacker needs in order to launch a more damaging attack. Of course, not
all software systems are well designed, and some are vulnerable to direct compromises using cookie
analysis, or even simple replay attacks involving cookies.

These issues lead to the idea of randomness testing, which is within the scope of black box testing.

Black Box Security Testing Tools 11
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

108. http://csrc.nist.gov/rng/

109. http://en.wikipedia.org/wiki/Diehard_tests

110. http://www.fourmilab.ch/random/

Some black box testing tools provide simple statistical tests and visualization tools to support cookie
analysis. Furthermore, the analysis and detection of cryptographically weak random-number schemes is
not purely the domain of software security, and this works to the advantage of the black box tester
because it makes more technology available for that task. For example, weak random number generation
is often used to generate events in software-based simulations, an application in which speed is more
important than security. This creates a need to know exactly what the weaknesses of the random number
generator are so that they do not bias the simulation.

There are some standard software packages for evaluating randomness empirically: the NIST battery108,
the Diehard battery109, and ent110.

As a final note, testers should be aware that even if a random number source passes these test batteries,
this does not imply that the source is cryptographically secure. As in many other areas, testing can only
demonstrate the presence of problems, not their absence.

Monitoring Program Behavior
Monitoring program behavior is an important part of any testing process because there must be a way to
determine the test outcome. This is often referred to as observability. Usually it means examining the
behavior of the program under test and asking whether this observed behavior is symptomatic of a
vulnerability in the software. This examination can be harder in security testing than it is in traditional
testing, because the tester is not necessarily comparing actual program behavior to expectations derived
from specifications. Rather, the tester is often looking for unspecified symptoms that indicate the
presence of unsuspected vulnerabilities. Nonetheless, there are cases in which the unusual behavior
sought by a security tester can be specified cleanly enough to test for it automatically.

For example, if a web application is being tested for cross-site scripting vulnerabilities, an attacker’s
ability to make the application echo externally supplied JavaScript is enough to indicate a possible
problem. Likewise, a series of tests meant to detect potential buffer overflows may just require the
application to be monitored for crashes.

There are many test automation tools with the ability to monitor program outputs and behavior. In
selecting a black box testing tool, it may be useful to consider whether a tool either provides its own
monitoring capabilities or integrates with other existing test automation frameworks.

Another aspect of behavior monitoring is that for security testing, one may have to observe black box
behavior that is not normally visible to the user. This can include an application’s communication with
network ports or its use of memory, for example. This functionality is discussed in the next section,
which deals with test support tools. A fault injection tool may also support this type of monitoring
because the underlying technologies are similar.

A final issue that also applies to traditional testing is that automation is quite useful for spotting
anomalous test outcomes. This is especially true during high-volume test activities like fuzzing. In
security testing, a great deal of reliance is placed on the tester’s ability to see subtle anomalies, but the
anomalies are not always too subtle for automated detection. Thus, some test tools automate monitoring
by letting the tester specify in advance what constitutes anomalous behavior.

Test Scaffolding
By test scaffolding we mean tools that support the tester’s activities, as opposed to actually generating

Black Box Security Testing Tools 12
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://csrc.nist.gov/rng/
http://en.wikipedia.org/wiki/Diehard_tests
http://www.fourmilab.ch/random/

122. http://www.uml.org.cn/Test/12/Automated%20Testing%20Tool%20Evaluation%20Matrix.pdf

data. This primarily includes test management technology, but test management is in the domain of
traditional test automation and we do not cover it here. Instead, we focus on technology for observing
and/or influencing application behavior in ways that would not normally be possible for an ordinary user
or tester.

Technologies for observing program behavior are quite common, since they are needed for numerous
other purposes as well, such as debugging and performance monitoring. Of course, their utility in test
automation depends somewhat on how easily they can be integrated with other test tools, especially
those for monitoring program behavior. Thus debuggers, which are usually interactive, can provide
testers with valuable information but might be a bottleneck during automated testing. On the other hand,
text-based tools can have their outputs postprocessed even if they are not explicitly supported by a
testing tool, while some graphical tools might allow a tester to observe anomalies even with a rapid-fire
series of automated tests.

There are some testing tools, notably the Holodeck system [Whittaker 02,Whittaker 03], that already
include test scaffolding of this kind.

Evaluation Criteria

The following is a list of evaluation criteria that may be considered when selecting a black box security
testing tool. Many of the criteria listed here are from Appendix B of [Dustin 01]122. Readers are
encouraged to consult this original document as well, since it gives an expanded list of evaluation
criteria and also provides evaluation results for several major test tool suites (albeit not security-specific
test tools). Not all of the criteria listed below may be relevant to all test organizations or all test projects.
In addition to the criteria listed here, organizations may also want to consider support for the specific
black box security testing technologies described previously in this document.

1. Ease of Use

1. Intuitive and easy to use for users new to automated testing tools

2. Easy to install; tool may not be used if difficult to install

3. Tasks can be accomplished quickly, assuming basic user proficiency

4. Easy to maintain automated tests, with a central repository that enables users to separate GUI
object definitions from the script

5. Can vary how designs and documents are viewed (zooming, multipage diagrams easily
supported, multiple concurrent views); basic windowing

2. Tool Customization

1. Fully customizable toolbars to reflect any commonly used tool capabilities

2. Tool customizable: fields added, deleted

3. Fully customized editor with formats and colors for better readability

4. Tool support for required test procedure naming convention

3. Breadth of Testing

1. Can be used with non-Microsoft platforms (UNIX, Linux, FreeBSD, Mac)

2. Tests for common website vulnerabilities

Black Box Security Testing Tools 13
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

3. Evaluates the test environment as well as the software

4. Supports standard web protocols for fuzzing and domain testing.

4. Test Coverage and Completeness

1. Coverage refers to the ability of the tools to test for all (known) categories of vulnerabilities
relevant to the product that has been developed. It is important to obtain a sense of the percentage
and nature of potential vulnerabilities the tools tests for. For example, if evaluating a web-based
system, the organization will want to determine whether the test tool identifies issues that may
result from improper input validation, SQL insertion attacks, cross-site scripting attacks, or
improper session management.

5. Accuracy/False-Positive Rate

1. Is there a large number of false positives? False positives will result in more analysis work for
the tester, who will be required to manually evaluate the results of the test tool.

2. Is there a large number of unidentified vulnerabilities?

6. Test Language Features

1. Allows add-ins and extensions compatible with third-party controls

2. Does not involve additional cost for add-ins and extensions

3. Has a test editor/debugger feature

4. Test scripting language flexible yet robust; allows for modular script development

5. Scripting language not too complex

6. Scripting language allows for variable declaration and use and for parameter to be passed
between functions

7. A test script compiler or an interpreter used?

8. Allows for interfacing and testing of external .dll and .exe files

9. Published APIs: Language Interface Capabilities

10.Tool is not intrusive: source code of application does not need to be expanded by inserting
additional statements or dlls for the application to be compatible with the tool

11.Allows for data-driven testing

12.Allows for automatic data generation

13.Allows for adding timers for timing transaction start and end

14.Allows for adding comments during recording

15.Allows for automatic or specified synchronization between client and server

16.Allows for object data extraction and verification

17.Allows for database verification

18.Allows for text (alphanumeric) verification

19.Allows for wrappers (shells) whereby multiple procedures can be linked and called from one
procedure

Black Box Security Testing Tools 14
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

20.Allows for automatic data retrieval from any data source—RDBMS, legacy system,
spreadsheet—for data-driven testing

21.Allows for use of common spreadsheet for data-driven testing

22.Ease of maintaining scripts when application changes

7. Test Management

1. Supports test execution management

2. Support for industry standards in testing processes (e.g., SEI/CMM, ATLM, ISO)

3. Interoperability with tools being used to automate traditional testing

4. Application requirements management support integrated with the test management tool

5. Requirements management capability supports the trace of requirements to test plans to provide
requirement coverage metrics

6. Test plans can be imported automatically into test management repository from standard text
files

7. Can be customized to organization’s test process

8. Supports planning, managing, and analyzing testing efforts; can reference test plans, matrices,
product specifications, in order to create traceability

9. Supports manual testing

10.Supports the migration from manual to automated scripts

11.Can track the traceability of tests to test requirements

12.Has built-in test requirements modules

13.Can check for duplicate defects before logging newly found defects

14.Allows for measuring test progress

15.Allows for various reporting activities

16.Allows for tracking of manual and automated test cases

17.Has interface to software architecture/modeling tool

18.Is integrated with unit testing tools

19.Has interface to test management tool

20.Has interface to requirements management tool

21.Has interface to defect tracking tool

22.Has interface to configuration management tool

23.Provides summary-level reporting

24.Includes error filtering and review features

25.Enables metric collection and metric analysis visualization

Black Box Security Testing Tools 15
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

8. Interoperability

1. Major test automation suites provide functionality that is useful in any large-scale testing
process. For smaller, more specialized tools, interoperability with other test tool suites may be
considered as an evaluation criterion.

9. Load and Stress Test Features

1. All users can be queued to execute a specified action at the same time

2. Automatic generation of summary load testing analysis reports

3. Ability to change recording of different protocols in the middle of load-recording session

4. Actions in a script can be iterated any specified number of times without programming or
rerecording of the script

5. Different modem connection speeds and browser types can be applied to a script without any
rerecording

6. Load runs and groups of users within load runs can be scheduled to execute at different times

7. Automatic load scenario generation based on load testing goals: hits/second, number of
concurrent users before specified performance degradation, and so on

8. Cookies and session IDs automatically correlated during recording and playback for dynamically
changing web environments

9. Allows for variable access methods and ability to mix access methods in a single scenario:
modem simulation or various line speed simulation

10.Ability to have data-driven scripts that can use a stored pool of data

11.Allows for throttle control for dynamic load generation

12.Allows for automatic service-level violation (boundary value) checks

13.Allows for variable recording levels (network, web, API, and so on)

14.Allows for transaction breakdown/drill-down capabilities for integrity verification at the per
client, per session, and per instance level for virtual users

15.Allows for web application server integration

16.Supports workload, resource, and/or performance modeling

17.Can run tests on various hardware and software configurations

18.Support headless virtual user testing feature

19.Requires low overhead for virtual user feature (web, database, other?)

20.Scales to how many virtual users?

21.Simulated IP addresses for virtual users

22.Thread-based virtual user simulation

23.Process-based virtual user simulation

24.Centralized load test controller

25.Allows for reusing scripts from functional test suite

Black Box Security Testing Tools 16
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

26.Support for WAP protocol testing against WAP Gateway or web server

27.Compatible with SSL recording

28.Compatible with which network interaction technologies? (e.g., streaming media, COM, EJB,
RMI, CORBA, Siebel, Oracle, SAP)

29.Compatible with which platforms? (e.g., Linux, UNIX, NT, XWindows, Windows CE, Win3.1,
Win95, Win98, Win2000, WinME)

10.Monitor Test Features

1. Monitors various tiers: web server, database server, and app server separately

2. Supports monitoring for which server frameworks? (e.g., ColdFusion, Broadvision, BEA
WebLogic, Silverstream, ATG Dynamo, Apache, IBM Websphere, Oracle RDBMS, MS SQL
Server, Real Media Server, IIS, Netscape Web Server

3. Supports monitoring of which platforms? (e.g., Linux, NT, UNIX, XWindows, Windows CE,
Win3.1, Win95/98, Win2000)

4. Monitors network segments

5. Supports resource monitoring

6. Synchronization ability in order to determine locking, deadlock conditions, and concurrency
control problems

7. Ability to detect when events have completed in a reliable fashion

8. Ability to provide client-to-server response times

9. Ability to provide graphical results and export them to common formats

11.Consulting Requirements

1. Maturity of vendor

2. Market share of vendor

12.Vendor Qualifications

1. Financial stability of vendor

2. Length of time in business

3. Technological maturity

13.Vendor Support

1. Software patches provided, if deemed necessary

2. Upgrades provided on a regular basis

3. Upgrades backward compatible: scripts from previous version can be reused with later version

4. Training available

5. Help feature available; tool well documented

6. Tech support reputation throughout industry

Black Box Security Testing Tools 17
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

7. No consulting needed?

8. Availability of and access to tool user groups

14.Product Pricing

1. Price consistent within estimated price range

2. Price consistent with comparable vendor products

3. ROI compared to current in-house technology

4. ROI compared to in-house development of needed technology

Use Throughout the Software Development Life Cycle

Security testing (and security analysis per se) is often regarded as something that takes place at the end
of the software development life cycle. However, far greater success can be achieved by integrating
security testing throughout the life cycle. As with any kind of defect, software vulnerabilities are easier
and cheaper to address if they are found earlier.

Figure 1. Black box security testing in the software development life cycle. Note that black box test
planning can often begin in the design phase due to its comparative independence from source

code.

Black box Security Testing and the Requirements/Design Stages
At the current time, potential vulnerabilities arising in the requirements and design phases cannot be
detected with automated tools; human expertise is needed here. Nonetheless, some aspects of test
automation should be considered during this phase.

Test planning usually begins in the requirements phase of the SDLC (see the module on risk-based and
functional security testing). The test plan should include a test automation plan as well. This plan
describes which tests will be automated and how. The “how” can be an important issue, because in many
cases testing does not involve a single, specialized tool but rather a set of general-purpose tools
originally intended for other purposes. The functionality that cannot be obtained in this way will have to
be obtained from third parties or built internally, and it is good to know as soon as possible what extra
capabilities will be acquired.

Of course, test automation planning also includes the decision of what testing to automate and what to
do manually. Having a clear idea of the test requirements makes it easier to make this decision, since the
necessary technology can be identified and priced (perhaps using some of the evaluation criteria listed in

Black Box Security Testing Tools 18
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

this document). Note that many automation requirements can be shared by security testing and
traditional testing; indeed many are supplied only by traditional test automation tools, so interoperability
needs to be considered. In the case of security testing, where the testers themselves often have quite a bit
of wide-ranging expertise, it may be advisable to consult the testers when determining which test
activities can be automated in-house (and at what cost), and to determine whether interoperability can be
achieved (possibly without the use of explicit APIs).

When estimating the utility of building or acquiring test automation tools, it should of course be kept in
mind that some tools might be able to be reused in the future. This is especially true for black box
security testing: the fact that it is black box testing makes it less project-dependent because it does not
refer to specific code artifacts, while the fact that it is security testing leads to a plethora of test
conditions that will have to be recreated in future test projects as testers try to anticipate what an attacker
would typically try out.

In many development projects, testing proceeds as a series of test stages, where one module is in the
process of being tested while others are still being developed. In such cases, the test environment cannot
wait until development is finished, but has to be available when the first module is ready for testing. This
is another reason to begin collecting the necessary tools as soon as possible (e.g., to know during the
design stage what the necessary tools will be).

The requirements phase is also the time when abuse cases are collected. Together with attack patterns,
these can be used to start designing black box tests.

Black box Security Testing in the Test/Coding Phase
Typically, the coding and testing phase for a software product consists of a series of test stages. Distinct
test stages arise because different modules are ready for testing at different times during the life cycle,
and also because software modules may be repaired or otherwise modified after testing, so that retesting
is needed.

Unit testing refers to the process of testing individual segments of code that are too small to execute
independently. The exact definition of unit testing is somewhat variable, but usually it refers to testing
individual functions, methods, or classes. Since unit testing generally involves software artifacts that
cannot be executed by themselves, it usually requires test drivers. The responsibility for unit testing
often falls on the shoulders of those who are most capable of writing the test drivers, namely the
developers themselves. Unit testing is not black box testing, but certain black box tools may be useful to
help with monitoring software behavior and creating error conditions. If the developers are charged with
setting up this support software on their own, the process may be chaotic and may not get done, with the
result that unit testing neglects security issues. It is preferable for the testing organization to perform this
aspect of setting up the test environment, since it was also the testing organization that outlined the
security requirements and decided what test tools should be acquired.

QA acceptance testing, also known by a number of other names such as smoke testing, is the process of
ensuring that the software is ready to enter the quality assurance process. For example, a module is not
actually ready for testing if it fails to compile for the test environment or immediately exhausts memory
and crashes.

From the security standpoint, a software module might fail QA acceptance testing for a number of
obvious reasons, such as the failure to implement a security requirement that is supposed to be tested.
But this test phase is also a good time to test for stupid implementation mistakes. First and foremost, a
naïve implementation of some security requirement might be blatantly ineffective and not even attempt
to deal with some of the issues that are supposed to be tested. Secondly, QA acceptance testing generally
contains an element of ad hoc testing, which also makes it a good time to test for dumb mistakes that
might not have been foreseen in the test plan. Finally, problems that are easy to test for should be tested
early on (e.g., in the QA acceptance test phase), since it is better to find problems sooner.

Black Box Security Testing Tools 19
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

145. daisy:72 (White Box Testing)

For these reasons, black box security testing may play an important role of QA acceptance testing. Fully
automated attack simulations and highly automated fuzzing tests are appropriate here, and testers might
also use domain testing to pursue intuitions. Like other test phases, QA acceptance testing is likely to
require secondary test support tools.

System-level and integration testing are meant to evaluate how the components of the application work
together and how the application works in conjunction with other applications. Many types of
vulnerabilities may not be apparent until the system under test reaches this stage. For example, suppose
the system under test is a web application that creates SQL queries based on user data. For such systems
there is a risk of SQL injection vulnerabilities, but it may be that the SQL interface was stubbed out
when the user interface was tested, while the SQL interface was tested using a test driver. In principle,
one could test for SQL injection vulnerabilities by comparing the input to the user interface with the data
that it sends to the SQL stub, but prepackaged, black box test tools might not be able to understand this
data or even be able to see it. Furthermore, there is a host of other potential security issues that might not
become apparent before the system test or integration test stage even with customized test automation.

At the same time, thorough white box testing [White Box Testing145] becomes quite difficult at this
stage, to say nothing of static analysis, because the complete system may contain many third-party
components, interacting layers implemented in different languages, and communication between
different subsystems running on heterogeneous hardware. Thus, black box testing becomes an
increasingly important part of the overall test process.

Regression testing is meant to test for recurrences of old bugs. It is common to use regression testing to
ensure that bugs have been fixed and that they do not resurface in later versions. By definition,
regression testing involves re-executing old tests, so its success depends primarily on how well those
tests have been recorded and/or automated. This applies whether it is traditional tests or security tests
that are being automated, but if a separate security-testing tool is in use, that tool might have to supply
its own infrastructure for recording and automation of past tests. One caveat is that when developers do
not fully understand what they are implementing (this seems to happen more often than usual with
security, cryptography, and random-number technology), they may write kludges that treat the previous
test inputs as special cases. If such a situation is suspected, it may not be appropriate to use fully
automated capture-replay-style tests during the regression test phase.

Security as a Cross-Cutting Concern

The above discussion attempted to map out various correlations between security testing and the overall
software development cycle. However, this does not mean that security testing should be forced into the
same framework used for traditional testing. Instead, security testing should be treated as a cross-cutting
concern, even though the entry criteria for certain security test activities might be the same as the entry
criteria for traditional test activities.

Case Study

Although it is strongly recommended that an organization does not rely exclusively on black box testing
to build security into a system, black box testing, when coupled with other security activities performed
throughout the SDLC, can be very effective in validating design assumptions, discovering vulnerabilities
associated with the application environment, and identifying implementation issues that may lead to
security vulnerabilities.

For example, an organization had assembled a large software development team to build a high-profile
Internet-based gaming system. The gaming system was planned to augment an existing,
government-sponsored, paper-based gaming system. Understanding the broad and potentially significant

Black Box Security Testing Tools 20
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

daisy:72

security implications relating to the system, the development organization made every effort to design
security into the product. A security architect was involved with the development effort from initial
requirement generation through system delivery. Security activities were conducted throughout the
SDLC to ensure that security was built into the system. These included the following:

• Security-based requirements were developed.

• Security-based risk assessments to identify areas of greatest risk to the business and the technology
platform were completed.

• Findings from the risk assessments were addressed in the security architecture and implementation.

• Security-based design and architecture reviews were conducted.

• Security training was provided to developers.

• Code reviews were conducted on security-critical components.

Despite these efforts, an issue associated with the input validation component was identified during
system-level security testing. Although input validation was engineered into the overall design and the
component had been previously approved in both design and code reviews, there was an issue. The
source of the problem was later identified to be associated with the build process. An incorrectly
functioning and previously rejected input validation component had made its way into the final build.
Had it not been for the final system-level security test activity, the system would have been deployed
with the faulty input validation mechanism.

Glossary

acceptance testing Formal testing conducted to enable a user,
customer, or other authorized entity to determine
whether to accept a system or component. [IEEE
90]

ad hoc testing Testing carried out using no recognized test case
design technique. [BS-7925]

authentication The process of confirming the correctness of the
claimed identity. [SANS 03]

black box testing Testing that is based on an analysis of the
specification of the component without reference
to its internal workings. [BS-7925]

buffer overflow A buffer overflow occurs when a program or
process tries to store more data in a data storage
area than it was intended to hold. Since buffers are
created to contain a finite amount of data, the extra
information—which has to go somewhere—can
overflow into the runtime stack, which contains
control information such as function return
addresses and error handlers.

buffer overflow attack See stack smashing.

bug See fault.

capture/replay tool A test tool that records test input as it is sent to the

Black Box Security Testing Tools 21
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

software under test. The input cases stored can
then be used to reproduce the test at a later time.
[BS-7925]

compatibility testing Testing whether the system is compatible with
other systems with which it should communicate.
[BS-7925]

component A minimal software item for which a separate
specification is available. [BS-7925]

conformance testing The process of testing that an implementation
conforms to the specification on which it is based.
[BS-7925]

cookie Data exchanged between an HTTP server and a
browser (a client of the server) to store state
information on the client side and retrieve it later
for server use. An HTTP server, when sending
data to a client, may send along a cookie, which
the client retains after the HTTP connection closes.
A server can use this mechanism to maintain
persistent client-side state information for
HTTP-based applications, retrieving the state
information in later connections. [SANS 03]

correctness The degree to which software conforms to its
specification. [BS-7925]

cryptographic attack A technique for successfully undermining an
encryption scheme.

cryptography Cryptography garbles a message in such a way that
anyone who intercepts the message cannot
understand it. [SANS 03]

domain The set from which values are selected. [BS-7925]

domain testing Testing with test cases based on the specification
of input values accepted by a software component.
[Beizer 90]

dynamic analysis The process of evaluating a system or component
based on its behavior during execution. [IEEE 90]

encryption Cryptographic transformation of data (called
“plaintext”) into a form (called “cipher text”) that
conceals the data’s original meaning to prevent it
from being known or used. [SANS 03]

failure The inability of a system or component to perform
its required functions within specified performance
requirements. [IEEE 90]

fault A manifestation of an error in software. A fault, if
encountered, may cause a failure. [RTCA 92]

Hypertext Transfer Protocol (HTTP) The protocol in the Internet Protocol (IP) family

Black Box Security Testing Tools 22
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

used to transport hypertext documents across an
internet. [SANS 03]

integration testing Testing performed to expose faults in the
interfaces and in the interaction between integrated
components. [BS-7925]

interface testing Integration testing in which the interfaces between
system components are tested. [BS-7925]

isolation testing Component testing of individual components in
isolation from surrounding components, with
surrounding components being simulated by stubs.
[BS-7925]

National Institute of Standards and Technology
(NIST)

A unit of the U.S. Commerce Department.
Formerly known as the National Bureau of
Standards, NIST promotes and maintains
measurement standards. It also has active
programs for encouraging and helping industry
and science to develop and use these standards.
[SANS 03]

negative requirements Requirements that state what software should not
do.

operational testing Testing conducted to evaluate a system or
component in its operational environment. [IEEE
90]

port A port is nothing more than an integer that
uniquely identifies an endpoint of a
communication stream. Only one process per
machine can listen on the same port number.
[SANS 03]

precondition Environmental and state conditions that must be
fulfilled before the component can be executed
with a particular input value.

protocol A formal specification for communicating; the
special set of rules that end points in a
telecommunication connection use when they
communicate. Protocols exist at several levels in a
telecommunication connection. [SANS 03]

pseudorandom Appearing to be random, when actually generated
according to a predictable algorithm or drawn
from a prearranged sequence.

race condition A race condition exploits the small window of
time between a security control being applied and
the service being used. [SANS 03]

regression testing Retesting of a previously tested program following
modification to ensure that faults have not been
introduced or uncovered as a result of the changes

Black Box Security Testing Tools 23
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

made. [BS-7925]

requirement A capability that must be met or possessed by the
system/software (requirements may be functional
or non-functional). [BS-7925]

requirements-based testing Designing tests based on objectives derived from
requirements for the software component (e.g.,
tests that exercise specific functions or probe the
non-functional constraints such as performance or
security). [BS-7925]

reverse engineering Acquiring sensitive data by disassembling and
analyzing the design of a system component
[SANS 03]; acquiring knowledge of a binary
program’s algorithms or data structures.

risk assessment The process by which risks are identified and the
impact of those risks is determined. [SANS 03]

security policy A set of rules and practices that specify or regulate
how a system or organization provides security
services to protect sensitive and critical system
resources. [SANS 03]

server A system entity that provides a service in response
to requests from other system entities called
clients. [SANS 03]

session A virtual connection between two hosts by which
network traffic is passed. [SANS 03]

socket The socket tells a host’s IP stack where to plug in
a data stream so that it connects to the right
application. [SANS 03]

software Computer programs (which are stored in and
executed by computer hardware) and associated
data (which also is stored in the hardware) that
may be dynamically written or modified during
execution. [SANS 03]

specification A description, in any suitable form, of
requirements. [BS-7925]

specification testing An approach to testing wherein the testing is
restricted to verifying that the system/software
meets the specification. [BS-7925]

SQL Injection SQL injection is a type of input validation attack
specific to database-driven applications where
SQL code is inserted into application queries to
manipulate the database. [SANS 03]

stack smashing The technique of using a buffer overflow to trick a
computer into executing arbitrary code. [SANS
03]

Black Box Security Testing Tools 24
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

state transition A transition between two allowable states of a
system or component. [BS-7925]

state transition testing A test case design technique in which test cases
are designed to execute state transitions.
[BS-7925]

static analysis Analysis of a program carried out without
executing the program. [BS-7925]

static analyzer A tool that carries out static analysis. [BS-7925]

stress testing Testing conducted to evaluate a system or
component at or beyond the limits of its specified
requirements. [IEEE 90]

stub A skeletal or special-purpose implementation of a
software module used to develop or test a
component that calls or is otherwise dependent on
it. [IEEE 90].

syntax testing A test case design technique for a component or
system in which test case design is based on the
syntax of the input. [BS-7925]

system testing The process of testing an integrated system to
verify that it meets specified requirements. [Hetzel
88]

test automation The use of software to control the execution of
tests, the comparison of actual outcomes to
predicted outcomes, the setting up of test
preconditions, and other test control and test
reporting functions.

test case A set of inputs, execution preconditions, and
expected outcomes developed for a particular
objective, such as to exercise a particular program
path or to verify compliance with a specific
requirement. [IEEE 90]

test suite A collection of one or more test cases for the
software under test. [BS-7925]

test driver A program or test tool used to execute software
against a test suite. [BS-7925]

test environment A description of the hardware and software
environment in which tests will be run and any
other software with which the software under test
interacts when under test, including stubs and test
drivers. [BS-7925]

test plan A record of the test planning process detailing the
degree of tester independence, the test
environment, the test case design techniques and
test measurement techniques to be used, and the
rationale for their choice. [BS-7925]

Black Box Security Testing Tools 25
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

161. http://www.ece.cmu.edu/~koopman/ballista/tcs99/index.html

vulnerability A defect or weakness in a system’s design,
implementation, or operation and management that
could be exploited to violate the system’s security
policy. [SANS 03]

web server A software process that runs on a host computer
connected to the Internet to respond to HTTP
requests for documents from client web browsers.

References

[Beizer 90] Beizer, Boris. Software Testing Techniques,
Chapter 10. New York, NY: van Nostrand
Reinhold, 1990 (ISBN 0-442-20672-0).

[Beizer 95] Beizer, Boris. Black-Box Testing: Techniques for
Functional Testing of Software and Systems. New
York, NY: John Wiley & Sons, 1995.

[Binder 99] Binder, R. V. Testing Object-Oriented Systems:
Models, Patterns, and Tools (Addison-Wesley
Object Technology Series). Boston, MA:
Addison-Wesley Professional, 1999.

[Black 02] Black, Rex. Managing the Testing Process:
Practical Tools and Techniques for Managing
Hardware and Software Testing, 2nd ed. New
York, NY: John Wiley & Sons, 2002.

[BS 7925] British Computer Society. Glossary of terms used
in software testing (BS 7925-1).

[Capers 94] Jones, Capers. Assessment and Control of
Software Risks. Englewood Cliffs, NJ: Yourdon
Press, 1994.

[DeVale 99] DeVale, J.; Koopman, P.; & Guttendorf, D. “The
Ballista Software Robustness Testing Service161,”
33-42. 16th International Conference on Testing
Computer Software. Washington, D.C., June
14-18, 1999.

[Du 98] Du, W. & Mathur, A. P. Vulnerability Testing of
Software System Using Fault Injection (COAST
technical report). West Lafayette, IN: Purdue
University, 1998.

[Du 00] Du, W. & Mathur, A. P. “Testing for Software
Vulnerability Using Environment Perturbation,”
603--612. Proceedings of the International
Conference on Dependable Systems and Networks
(DSN 2000), Workshop On Dependability Versus

Black Box Security Testing Tools 26
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://www.ece.cmu.edu/~koopman/ballista/tcs99/index.html
http://www.ece.cmu.edu/~koopman/ballista/tcs99/index.html

162. http://gocsi.com/forms/fbi/csi_fbi_survey.jhtml

163. http://www.hipaassoc.com/Anonymous/sp800-36%20Guide%20to%20Selecting%20Information%20Technology%20Security%20Products.pdf

Malicious Faults. New York, NY, June 25-28,
2000. Los Alamitos, CA: IEEE Computer Society
Press, 2000.

[Dustin 99] Dustin, E.; Rashka, J.; & Paul, J. Automated
Software Testing. Boston, MA: Addison Wesley
Professional, 1999.

[Dustin 01] Dustin, Elfriede; Rashka; Jeff; McDiarmid,
Douglas; & Nielson, Jakob. Quality Web Systems:
Performance, Security, and Usability. Boston,
MA: Addison Wesley Professional, 2001.

[Faust 04] Faust, S. “Web Application Testing with SPI
Fuzzer.” SPI Dynamics Whitepaper, 2004.

[Fewster 99] Fewster, Mark & Graham, Doroty. Software Test
Automation. Boston, MA: Addison-Wesley
Professional, 1999.

[Fink 97] Fink, G. & Bishop, M. “Property-Based Testing: A
New Approach to Testing for Assurance.” ACM
SIGSOFT Software Engineering Notes 22, 4 (July
1997): 74-80.

[Friedman 95] Friedman, Michael A. & Voas, Jeffrey M.
Software Assessment: Reliability, Safety,
Testability. Wiley InterScience, 1995.

[Ghosh 98] Ghosh, Anup K.; O’Connor, Tom; & McGraw,
Gary. “An Automated Approach for Identifying
Potential Vulnerabilities in Software,” 104-114.
Proceedings of the 1998 IEEE Symposium on
Security and Privacy. Oakland, California, May
3-6, 1998. Los Alamitos, CA: IEEE Computer
Society Press, 1998.

[Gordon 05] Gordon, Lawrence A.; Loeb, Martin P.; Lucyshyn,
William; & Richardson, Robert. 2005 CSI/FBI
Computer Crime and Security Survey162. San
Francisco, CA: Computer Security Institute, 2005.

[Graff 03] Graff, Mark G. & Van Wyk, Kenneth R. Secure
Coding: Principles and Practices. Sebastopol, CA:
O’Reilly, 2003 (ISBN: 0596002424).

[Grance 02] Grance, T.; Myers, M.; & Stevens, M. Guide to
Selecting Information Technology Security
Products163 (NIST Special Publication 800-36),
2002.

[Grance 04] Grance, T.; Myers, M.; & Stevens, M. Security
Considerations in the Information System
Development Life Cycle164 (NIST Special

Black Box Security Testing Tools 27
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://gocsi.com/forms/fbi/csi_fbi_survey.jhtml
http://gocsi.com/forms/fbi/csi_fbi_survey.jhtml

164. http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf

165. http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf

166. http://www.usenix.org/publications/library/proceedings/usenix-nt99/hunt.html

167. http://www.inf.vtt.fi/pdf/publications/2001/P448.pdf

Publication 800-64), 2004.

[Guttman 95] Guttman, Barbara; Roback, Edward. An
Introduction to Computer Security165.
Gaithersburg, MD: U.S. Department of
Commerce, Technology Administration, National
Institute of Standards and Technology, 1995.

[Hetzel 88] Hetzel, William C. The Complete Guide to
Software Testing, 2nd ed. Wellesley, MA: QED
Information Sciences, 1988.

[Hoglund 04] Hoglund, Greg & McGraw, Gary. Exploiting
Software: How to Break Code. Boston, MA:
Addison-Wesley Professional, 2004.

[Hsueh 97] Hsueh, Mei-Chen; Tsai, Timothy K.; & Lyer,
Ravishankar K. “Fault Injection Techniques and
Tools.” Computer 30, 4 (April 1997): 75-82.

[Hunt 99] Hunt, G. & Brubacher, D. “Detours: Binary
Interception of Win32 Functions166.” USENIX
Technical Program - Windows NT Symposium 99.
Seattle, Washington, July 12-15, 1999.

[IEEE 90] IEEE. IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std
610.12-1990). Los Alamitos, CA: IEEE Computer
Society Press, 1990.

[Kaksonen 02] Kaksonen, R. “A Functional Method for Assessing
Protocol Implementation Security167.” Technical
Research Centre of Finland, VTT Publications 48.

[Kaner 99] Kaner, Cem; Falk, Jack; & Nguyen, Hung Quoc.
Testing Computer Software, 2nd ed. New York,
NY: John Wiley & Sons, 1999.

[Koziol 04] Koziol, J.; Litchfield, David; Aitel, Dave; Anley,
Chris; Eren, Sinan "noir"; Mehta, Neel; & Hassell,
Riley. The Shellcoder’s Handbook: Discovering
and Exploiting Security Holes. New York, NY:
John Wiley & Sons, 2004.

[Marick 94] Marick, Brian. The Craft of Software Testing:
Subsystems Testing Including Object-Based and
Object-Oriented Testing. Upper Saddle River, NJ:
Prentice Hall PTR, 1994.

[McGraw 04a] McGraw, Gary & Potter, Bruce. “Software
Security Testing.” IEEE Security and Privacy 2, 5

Black Box Security Testing Tools 28
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://www.usenix.org/publications/library/proceedings/usenix-nt99/hunt.html
http://www.usenix.org/publications/library/proceedings/usenix-nt99/hunt.html

168. http://www.networkmagazine.com/showArticle.jhtml?articleID=49901410

169. http://www.nist.gov/director/prog-ofc/report02-3.pdf

170. http://csrc.nist.gov/publications/nistpubs/800-22/sp-800-22-051501.pdf

171. http://www.sans.org/resources/glossary.php

(Sept.-Oct. 2004): 81-85.

[McGraw 04b] McGraw, Gary. “Application Security Testing
Tools: Worth the Money?168” Network Magazine,
November 1, 2004.

[Miller 90] Miller, Barton P.; Fredriksen, Lars; & So, Bryan.
“An empirical study of the reliability of UNIX
utilities.” Communications of the ACM 33, 12
(December 1990): 32-44.

[Miller 95] Miller, B.; Koski, D.; Lee, C.; Maganty, V.;
Murthy, R.; Natarajan, A.; & Steidl, J. Fuzz
Revisited: A Re-Examination of the Reliability of
Unix Utilities and Services. Technical report,
Computer Sciences Department, University of
Wisconsin, 1995.

[NIST 02] NIST. The Economic Impacts of Inadequate
Infrastructure for Software Testing169 (Planning
Report 02-3). Gaithersburg, MD: National Institute
of Standards and Technology, 2002.

[Ricca 01] Ricca, F. & Tonella, P. “Analysis and Testing of
Web Applications,” 25–34. Proceedings of the
23rd IEEE International Conference on Software
Engineering. Toronto, Ontario, Canada, May
2001. Los Alamitos, CA: IEEE Computer Society
Press, 2001.

[RTCA 92] RTCA, Inc. DO-178B, Software Considerations in
Airborne Systems and Equipment Certification.
Issued in the U.S. by RTCA, Inc. (document
RTCA SC167/DO-178B) and in Europe by the
European Organization for Civil Aviation
Electronics (EUROCAE document ED-12B),
December 1992.

[Rukhin 01] Rukhin, Andrew; Soto, Juan; Nechvatal, James;
Smid, Miles; Barker, Elaine; Leigh, Stefan;
Levenson, Mark; Vangel, Mark; Banks, David;
Heckert, Alan; Dray, James; & Vo, San. A
Statistical Test Suite for Random and
Pseudorandom Number Generators for
Cryptographic Applications170. NIST Special
Publication 800-22, 2001.

[SANS 03] The SANS Institute. SANS Glossary of Terms
Used in Security and Intrusion Detection171, 2003.

[SPI 02] SPI Dynamics. “SQL Injection: Are Your Web

Black Box Security Testing Tools 29
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

http://www.networkmagazine.com/showArticle.jhtml?articleID=49901410
http://www.networkmagazine.com/showArticle.jhtml?articleID=49901410
http://www.sans.org/resources/glossary.php
http://www.sans.org/resources/glossary.php

172. http://csrc.nist.gov/publications/nistpubs/800-42/NIST-SP800-42.pdf

173. http://www.node99.org/projects/vuln/vuln.pdf

Applications Vulnerable?” (white paper). Atlanta,
GA: SPI Dynamics, 2002.

[SPI 03] SPI Dynamics. “Web Application Security
Assessment” (white paper). Atlanta, GA: SPI
Dynamics, 2003.

[Viega 01] Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems the
Right Way. Boston, MA: Addison-Wesley
Professional, 2001 (ISBN 020172152X).

[Viega 03] Viega, John & Messier, Matt. Secure
Programming Cookbook for C and C++.
Sebastopol, CA: O’Reilly, 2003 (ISBN:
0596003943).

[Voas 95] Voas, Jeffrey M. & Miller, Keith W. “Examining
Fault-Tolerance Using Unlikely Inputs: Turning
the Test Distribution Up-Side Down,” 3-11.
Proceedings of the Tenth Annual Conference on
Computer Assurance. Gaithersburg, Maryland,
June 25-29, 1995. Los Alamitos, CA: IEEE
Computer Society Press, 1995.

[Voas 98] Voas, Jeffrey M. & McGraw, Gary. Software
Fault Injection: Inoculating Programs Against
Errors, 47-48. New York, NY: John Wiley &
Sons, 1998.

[Wack 03] Wack, J.; Tracey, M.; & Souppaya, M. Guideline
on Network Security Testing172. NIST Special
Publication 800-42, 2003.

[Whalen] Whalen, Sean; Bishop, Matt; & Engle, Sophie.
“Protocol Vulnerability Analysis173 (draft).”

[Whittaker 02] Whittaker, J. A. How to Break Software. Reading
MA: Addison Wesley, 2002.

[Whittaker 03] Whittaker, J. A. & Thompson, H. H. How to Break
Software Security. Reading MA: Addison Wesley,
2003.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005. Cigital-authored documents are sponsored by the U.S. Department of
Defense under Contract FA8721-05-C-0003. Cigital retains copyrights in all material produced under
this contract. The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce
these documents, or allow others to do so, for U.S. Government purposes only pursuant to the copyright
license under the contract clause at 252.227-7013.

Black Box Security Testing Tools 30
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

1. mailto:copyright@cigital.com

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital,
including information about “Fair Use,” contact Cigital at copyright@cigital.com1.

Fields

Name Value

Copyright Holder Cigital, Inc.

Fields

Name Value

is-content-area-overview true

Content Areas Tools/Black Box Testing

SDLC Relevance Testing

Workflow State Publishable

Black Box Security Testing Tools 31
ID: 261 | Version: 8 | Date: 18/08/06 16:28:01

mailto:copyright@cigital.com

